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Abstract

In the immersed interface method, a boundary immersed in a fluid is represented as a singular force in the Navier–
Stokes equations. This paper presents an explicit approach for computing the singular force to enforce prescribed motion
of a rigid boundary in an incompressible viscous flow. The tangential component of the singular force is related to the
surface vorticity and is calculated from the normal derivative of the velocity. The normal component of the singular force
is determined from a predictor and a corrector. The predictor uses the normal derivative of the vorticity. The corrector
superposes a homogeneous solution to the pressure Poisson equation to achieve the desired normal derivative of the pres-
sure. In the current immersed interface method, the velocity and the pressure are solved using the MAC scheme with the
incorporation of jump conditions induced by the singular force and a discontinuous finite body force. The body force is
applied to obtain the rigid motion of the fluid enclosed by the boundary. Circular Couette flow, flow past a cylinder, and
flow around flappers are simulated to test the accuracy, stability, and efficiency of the method as well as the effect of the
corrector. With no stiff springs to model rigid boundaries, the method is stable at relatively high Reynolds numbers.
� 2008 Elsevier Inc. All rights reserved.
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1. Introduction

The immersed interface method was first proposed by LeVeque and Li [17,18] with the motivation to
improve the accuracy of Peskin’s immersed boundary method [25,26]. Both methods have been developed
in various aspects and applied in various problems since their first appearance, as summarized in Peskin’s
overview paper [27] and a recent book by Li and Ito [20]. The current author’s previous papers on the
immersed interface method [36–38] provide some detailed comparisons between the two methods along with
extensive citations.
0021-9991/$ - see front matter � 2008 Elsevier Inc. All rights reserved.
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When applied to flow simulation, the immersed interface method shares the same mathematical formula-
tion as the immersed boundary method. In particular, the boundary of an immersed object is formulated
as a singular force in the incompressible Navier–Stokes equations. For the 2D case shown in Fig. 1, the math-
ematical formulation reads
o~v
ot
þr � ð~v~vÞ ¼ �rp þ 1

Re
D~vþ

Z
C

~f ða; tÞdð~x� ~X ða; tÞÞdaþ~b; ð1Þ

Dp ¼ sp þr �
Z

C

~f ða; tÞdð~x� ~X ða; tÞÞdaþ~b
� �

; ð2Þ
where ~v ¼ ðu; vÞ is the velocity, p is the pressure, Re is the Reynolds number, C is the immersed boundary
parametrized by the Lagrangian parameter a;~f ¼ ðfx; fyÞ is the density of the singular force, dð�Þ is the 2D Dir-
ac d function,~x ¼ ðx; yÞ is Cartesian coordinates, ~X ¼ ðX ; Y Þ is the Cartesian coordinates of the boundary, and
~b ¼ ðbx; byÞ is a finite body force. The term sp is
sp ¼ �
oD
ot
þr � ð2~vDÞ � 1

Re
DD

� �
þ 2

ou
ox

ov
oy
� ou

oy
ov
ox

� �
; ð3Þ
where D ¼ r �~v is the divergence of the velocity. Terms with the divergence D are zero in theory, but they may
be kept in numerics to better enforce the divergence-free condition.

Eqs. (1) and (2) are defined on the entire region X which is composed by the subdomains Xþ and X� in
Fig. 1. The subdomains Xþ and X� are filled with the same fluid and are separated by the immersed boundary
C. Without loss of generality, the formulation given by Eqs. (1) and (2) along with Fig. 1 will be used hereafter
for the presentation. In Fig. 1, the tangent~s and the normal ~n to C are calculated as
~s ¼ ðsx; syÞ ¼
1

J
o~X
oa

; ð4Þ

~n ¼ ðnx; nyÞ ¼ ðsy ;�sxÞ; ð5Þ

where J is
J ¼ o~X
oa

�����
�����

2

: ð6Þ
With this formulation, both the immersed boundary method and the immersed interface method allow for
fixed grids and fast flow solvers on the entire region X. Therefore they can efficiently simulate the interaction
of a fluid with multiple moving boundaries. Regarding this formulation, there are two crucial questions. One is
τ
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Fig. 1. Geometric description of an immersed boundary.
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how to calculate the singular force (the force density ~f ). The other is how to numerically treat the force sin-
gularity (the Dirac d function).

The immersed boundary method and the immersed interface method differ in the numerical treatment of
the force singularity at C. The immersed boundary method uses discretized smooth functions to approximate
the Dirac d function. The immersed interface method directly incorporates singularity-induced jump condi-
tions across C into numerical schemes, so it can achieve second-order accuracy and sharp fluid–solid inter-
faces. The required jump conditions in the immersed interface method can be derived systematically [36].
They can be incorporated into finite difference and interpolation schemes according to a generalized Taylor
expansion [36]
F

gðz�mþ1Þ ¼
X1
n¼0

gðnÞðzþ0 Þ
n!

ðzmþ1 � z0Þn þ
Xm

l¼1

X1
n¼0

½gðnÞðzlÞ�
n!

ðzmþ1 � zlÞn; ð7Þ
where gðzÞ is a nonsmooth function shown in Fig. 2a, and ½gðnÞðzlÞ� ¼ gðnÞðzþl Þ � gðnÞðz�l Þ denotes jump condi-
tions along the z direction. Below are examples of modified second-order central finite difference schemes
which have discontinuities at z ¼ nðzi�1 6 n 6 ziÞ and z ¼ gðzi 6 g 6 ziþ1Þ on its stencil as shown in Fig. 2b.
dgðz�i Þ
dz

¼ gðz�iþ1Þ � gðzþi�1Þ
2h

þOðh2Þ þ 1

2h

X2

n¼0
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; ð8Þ

d2gðz�i Þ
dz2

¼
gðz�iþ1Þ � 2gðziÞ þ gðzþi�1Þ

h2
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: ð9Þ
An interpolation scheme also needs to account for the jump conditions if its stencil contains discontinuities.
The following second-order interpolation scheme applies to the case shown in Fig. 2b:
gðz�i Þ ¼
gðzþi�1Þ þ gðz�iþ1Þ

2
þOðh2Þ þ 1

2

ogðnÞ
oz

� �
ðzi�1 � nÞ � 1

2

ogðgÞ
oz

� �
ðziþ1 � gÞ: ð10Þ
Using modified finite difference and interpolation schemes, the mathematical formulation, Eqs. (1) and (2), can
be discretized on a fixed Cartesian grid, and fast flow solvers based on a Cartesian grid can be adopted. An
overview of the immersed interface method is given in Section 2.

This paper focuses on the first question: how to calculate the singular force (the force density ~f ) in the
immersed interface method. In the discrete form, the mapping between the singular force and the boundary
motion can be written as
FðfÞ ¼ V; ð11Þ

where the force array f is composed of the values of fx and fy at all discrete Lagrangian points that are used to
represent the boundary, the velocity array V is composed of the values of u and v at these points, and the oper-
ator F depends on the spatial discretization, interpolation, and temporal integration in the immersed interface
method.
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ig. 2. (a) A nonsmooth function for generalized Taylor expansion, and (b) a stencil for generalized finite difference schemes.
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Most papers on the immersed boundary method and the immersed interface method solve the usual free-
boundary problem. In the free-boundary problem, the boundary is updated by
X ¼ IðVÞ; ð12Þ

where the coordinate array X is composed of the values of X and Y at the Lagrangian points, and the operator
I depends on the temporal integration for the boundary motion. The singular force is computed from a con-
stitutive law, which relates the force density to the boundary configuration,
f ¼ GðXÞ; ð13Þ

where the function G is given by a boundary model, for example, an elastic structure model. The computation
of the singular force is therefore a modeling process. The boundary motion results from the coupling between
the boundary model and fluid flow, and is unknown in advance. From the current time step n to the next nþ 1,
an explicit scheme gives
Vnþ1 ¼ FðGðXnÞÞ; ð14Þ
Xnþ1 ¼ IðVnÞ: ð15Þ
Numerical instability can occur if the boundary model, Eq. (13), is stiff. Tu and Peskin [34], Stockie and Wet-
ton [32], and Cortez et al. [4] have conducted stability analysis for the immersed boundary method. To im-
prove on the numerical stability, an implicit treatment was implemented in the immersed interface method
[18,16], which is
Vnþ1 ¼ FðGðXnþ1ÞÞ; ð16Þ

Xnþ1 ¼ Xn þ 1

2
dtðVn þ Vnþ1Þ; ð17Þ
where dt denotes the time step. Nonlinear solvers, such as BFGS or SR1, are needed in the implicit treatment
[18,16].

In this paper, an inverse problem is pursued, in which the boundary motion is prescribed in advance, and
the singular force is sought to enforce the known boundary motion. There are two ways to solve this inverse
problem. One is the use of ad hoc penalty approaches, such as stiff spring models [14,37] and feedback controls
[9,37]. They have the same algorithmic nature as constitutive laws. A widely-used feedback control is the one
by Goldstein et al. [9]
~f ¼ Ksð~X e � ~X Þ þ Kdð~V e � ~V Þ; ð18Þ

where Ks and Kd are two positive constants, ~X e and ~X are the prescribed and simulated boundary coordinates,
respectively, and ~V e and ~V are the prescribed and simulated boundary velocity, respectively. If Kd is zero, this
feedback control is equivalent to a spring model [14,37]. The response times of spring models or feedback con-
trols have to be much shorter than the characteristic time scales of the flow [14,37], which requires large Ks or
Kd and causes numerical instability at high Reynolds numbers. The disadvantages of ad hoc penalty ap-
proaches include adjustment of free parameters, spurious oscillations, and numerical instability.

The other way to find the singular force for the prescribed boundary motion is to directly solve the mapping
between the singular force and the boundary motion. If the nonlinear terms in the Navier–Stokes equations
are discretized explicitly from their convective form, the mapping given by Eq. (11) is linear and can be
reduced to the matrix-vector form
F f þ V0 ¼ V; ð19Þ

where V0 corresponds to f ¼ 0. If the boundary velocity is prescribed as V ¼ Ve, the above linear system can
be solved to obtain f. Depending on algorithms, the linear system is formed and solved directly or indirectly.
The idea to form and solve a linear system to enforce given boundary conditions was introduced by Calhoun
[3]. Calhoun considered the immersed interface method in a streamfunction–vorticity formulation. The no-slip
boundary condition is imposed through a distribution of vorticity sources along the boundary. Calhoun pre-
sented in detail how to set up and solve a linear system for the vorticity sources along a stationary boundary,
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and proposed to use GMRES to handle a moving boundary. Li et al. [21] has implemented a similar idea to
impose Neumann pressure boundary conditions in Stokes flows.

Le et al. [15] employed the same idea in their immersed interface method to enforce the prescribed velocity.
Their linear system can be written as
F fnþ1
2 þ V0 ¼ Vnþ1

e ; ð20Þ

where the time level of the force density f is denoted as nþ 1

2
since mixed explicit and implicit schemes were

used in their flow solver. By setting f be each column of an identity matrix, they integrated the discretized gov-
erning equations to obtain V. The matrix F has the corresponding column equal to V� V0. If all boundaries
are stationary and the time step of the temporal integration is constant, the matrix F needs to be formed and
inverted only once. Otherwise, the matrix F changes in each time step and is not formed explicitly, and
GMRES is used to solve the linear system iteratively.

In this paper, an explicit approach is proposed to compute the singular force for a rigid boundary with pre-
scribed motion. The basic process is to explicitly compute the singular force from available jump conditions.
The available jump conditions are numerically calculated from the currently known flow field. This approach
does not need to form the above-mentioned matrix-vector system; it does not require iterative solvers; and it
does not have numerical instability at relatively high Reynolds numbers. It has advantages in stability, effi-
ciency, simplicity, and extensibility. Based on Eq. (11), the explicit form in this approach can be written as
fn ¼ F�1ðVn
eÞ: ð21Þ
So the singular force is computed from the known flow information at the current time step n. After the
singular force fn is computed, the flow field is updated to the next time step nþ 1. This current approach
may be better interpreted as a way to explicitly implement velocity and pressure boundary conditions on
moving rigid objects that are embedded in a fixed Cartesian grid. Essentially, its algorithmic treatment of
the boundary is very similar to that of a body-fitted grid method which couples the velocity conditions
explicitly into one-sided finite difference schemes and applies the Neumann boundary condition for the
pressure Poisson equation.

The current approach shares the ideas from the methods by Russell and Wang [31] and Linnick and
Fasel [22]. In Russell and Wang’s method, the non-penetration boundary condition is satisfied by super-
posing a homogeneous solution to the Poisson equation for the streamfunction. In Linnick and Fasel’s
method, one-sided finite differences are used to obtain jump conditions for the vorticity and the stream-
function. The current approach is built upon the primitive-variable formulation, Eqs. (1) and (2). The
tangential component of a singular force is determined from the normal derivative of the velocity using
one-sided finite difference. The normal component is determined from a predictor and a corrector. The pre-
dictor uses the normal derivative of the vorticity. The corrector solves a Neumann–Dirichlet map and
superposes a homogeneous solution to the Poisson equation for the pressure to achieve the desired normal
derivative of the pressure. In addition, a discontinuous finite body force is applied such that the fluid
enclosed by the boundary is in rigid motion.

2. Overview of the immersed interface method

In the current implementation of the immersed interface method, the momentum equation, Eq. (1), and the
pressure Poisson equation, Eq. (2), are solved using the MAC scheme [11] along with a fourth-order RK time
integration scheme and an FFT-based Poisson solver. More details on the implementation are referred to [37].
A MAC grid is a staggered Cartesian grid, on which the pressure p and the velocity components u and v are
arranged as in Fig. 3. As pointed out by Johnston and Liu [12,13] and E and Liu [7], high order explicit time-
marching schemes are appropriate for flow of moderate to high Reynolds numbers, where the viscous time
step constraint is less restrictive than the convective one. However, explicit time-marching schemes are not
a requirement. If low Reynolds numbers are of interest, implicit treatment of the viscous terms can be adopted
instead. Since the MAC grid is uniform in the current implementation, an FFT-based Poisson solver can be
used, which solves the pressure Poisson equation in OðN ln NÞ time, where N is the total number of MAC grid
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nodes for the pressure. FFT-based Poisson solvers can handle periodic, Dirichlet, Neumann, or mixed bound-
ary conditions at the far-field boundary B in Fig. 1 by using FFT, sine, cosine, or quarter-wave transforma-
tions [28].

A flow quantity at a fixed point in space may have a jump with respect to time when a boundary passes that
point, and a temporal jump condition can be related to a corresponding spatial jump condition [36,37]. In sim-
ulating a viscous flow, the incorporation of temporal jump conditions in temporal discretization has negligible
effect on simulation results [37,38]. In the current implementation, temporal jump conditions are not included.

The boundary C is rigid in the current consideration. It is represented by periodic cubic splines formed from
Lagrangian points. In Fig. 3, Lagrangian points are denoted as solid circles. As indicated by Eqs. (8)–(10), the
jump contributions in the finite difference and interpolation schemes are non-zero only if their stencils cross
the boundary. In order to distinguish these stencils, the intersections between MAC grid lines and the bound-
ary are identified. The unknown coordinates of the intersections and the necessary jump conditions at the
intersections are interpolated from the Lagrangian points. In Fig. 3, the intersections are denoted as open
circles.

Define the central finite difference operators dx, dy ; dxx, and dyy as
dxð�Þi;j ¼
ð�Þiþ1

2;j
� ð�Þi�1

2;j

dx
þ cxð�Þi;j; ð22Þ

dyð�Þi;j ¼
ð�Þi;jþ1

2
� ð�Þi;j�1

2

dy
þ cyð�Þi;j; ð23Þ

dxxð�Þi;j ¼
ð�Þiþ1;j � 2ð�Þi;j þ ð�Þi�1;j

dx2
þ cxxð�Þi;j; ð24Þ

dyyð�Þi;j ¼
ð�Þi;jþ1 � 2ð�Þi;j þ ð�Þi;j�1

dy2
þ cyyð�Þi;j; ð25Þ
where dx and dy are the spatial steps as shown in Fig. 3, and cx; cy ; cxx, and cyy denote jump contributions. If the
stencils of the above finite difference operators cross C, the jump contributions are non-zero, and they can be
calculated according to Eqs. (8) and (9). Otherwise, the jump contributions are zero, and usual central finite
difference schemes are recovered. With these central finite difference operators, the spatially discretized
momentum equation for the velocity component u at ðiþ 1

2
; jÞ can be written as
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ou
ot
¼ �dxðuuÞ � dyðvuÞ � dxp þ

1

Re
ðdxx þ dyyÞu; ð26Þ
where the subscript ðiþ 1
2
; jÞ is neglected in the operators. A similar equation for v at ði; jþ 1

2
Þ can be obtained.

The discretized Poisson equation for the pressure p at ði; jÞ can be written as
ðdxx þ dyyÞp ¼ �
oD
ot
� 2ðdxðuDÞ þ dyðvDÞÞ þ 1

Re
ðdxx þ dyyÞDþ 2ðdxudyv� dyudxvÞ; ð27Þ
where oD
ot is discretized by assuming D ¼ 0 at the next time level.

The values of ui;j; ui;jþ1
2
; vi;j, and viþ1

2;j
are needed in the discretized equations. They can be interpolated from

uiþ1
2;j

and vi;jþ1
2
. Define the interpolation operators ei and ej as
eið�Þi;j ¼
ð�Þiþ1

2;j
þ ð�Þi�1

2;j

2
þ cið�Þi;j; ð28Þ

ejð�Þi;j ¼
ð�Þi;jþ1

2
þ ð�Þi;j�1

2

2
þ cjð�Þi;j; ð29Þ
where ci and cj denote jump contributions. If the stencils of the above interpolation operators cross C, the
jump contributions are non-zero, and they can be calculated according to Eq. (10). Otherwise, the jump con-
tributions are zero, and usual interpolation schemes are recovered. With these interpolation operators, the
interpolation for ui;j and ui;jþ1

2
can be written as follows:
ui;j ¼ eiui;j; ð30Þ
ui;jþ1

2
¼ ejui;jþ1

2
: ð31Þ
The similar interpolation for vi;j and viþ1
2;j

can be obtained.
As indicated by Eqs. (8)–(10), necessary jump conditions are needed to obtain the jump contributions in the

above finite difference and interpolation schemes. The jump conditions are related to the singular force (the
force density~f ). Section 4 lists these relations. The singular force is calculated to enforce the prescribed motion
of the boundary C using the explicit approach, which is mentioned in Section 1 and described in detail in
Sections 5–7. In this explicit approach, a discontinuous finite body force is applied such that the fluid enclosed
by the boundary is in rigid motion. The body force is found in Section 3.

3. Body force

The motion of the rigid boundary C can be prescribed through~xcðtÞ and hðtÞ, where~xc ¼ ðxc; ycÞ denotes the
Cartesian coordinates of a point c which is fixed with respect to the boundary, and h denotes the rotational
angle of the boundary in the Cartesian coordinate system. When the fluid in the region X�, which is enclosed
by C, is in the rigid motion, the velocity~v ¼ ðu; vÞ at a fixed point in X� is
u ¼ dx
dt
¼ dxc

dt
� dh

dt
ðy � ycÞ; ð32Þ

v ¼ dy
dt
¼ dyc

dt
þ dh

dt
ðx� xcÞ; ð33Þ
which satisfies
sp ¼ 2
dh
dt

� �2

; ð34Þ

d~v
dt
¼ �r � d2xc

dt2
x� d2yc

dt2
y þ 1

2

dh
dt

� �2

ððx� xcÞ2 þ ðy � ycÞ
2Þ

 !
þ 1

Re
D~vþ~b; ð35Þ
where the expression for sp is given by Eq. (3), D~v ¼ 0, and ~b ¼ ðbx; byÞ is
bx ¼ �
d2h
dt2
ðy � ycÞ; ð36Þ
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by ¼
d2h
dt2
ðx� xcÞ: ð37Þ
So a discontinuous body force~b can be applied to achieve the rigid motion of the fluid in X�. In X�, it is given
by Eqs. (36) and (37). Since the flow of interest is in Xþ, it must be zero in Xþ. The body force is discontinuous
and has the following finite jumps across C:
½bs� ¼ �
d2h
dt2
ð�ðY � ycÞsx þ ðX � xcÞsyÞ; ð38Þ

½bn� ¼ �
d2h
dt2
ð�ðY � ycÞnx þ ðX � xcÞnyÞ; ð39Þ
where ½bs� ¼ ½~b� �~s and ½bn� ¼ ½~b� �~n. Hereafter ½�� ¼ ð�ÞCþ � ð�ÞC� denotes a jump across C along the normal~n,
where Cþ and C� denote the outer and the inner sides of C, respectively, as shown in Fig. 1.

As indicated by Eq. (35), the pressure in X�, subject to a constant, is
p ¼ � d2xc

dt2
x� d2yc

dt2
y þ 1

2

dh
dt

� �2

ððx� xcÞ2 þ ðy � ycÞ
2Þ: ð40Þ
Thus, the pressure at C� is
pjC� ¼ �
d2xc

dt2
X � d2yc

dt2
Y þ 1

2

dh
dt

� �2

ððX � xcÞ2 þ ðY � ycÞ
2Þ; ð41Þ
and the normal derivative of the pressure at C� is
op
on

����
C�
¼ � d2xc

dt2
nx �

d2yc

dt2
ny þ

dh
dt

� �2

ððX � xcÞnx þ ðY � ycÞnyÞ; ð42Þ
where oð�Þ
on ¼ rð�Þ �~n denotes a normal derivative.

In the numerical implementation, the momentum equation, Eq. (1), is solved with~b ¼ 0 in the entire region
X, and the discontinuous body force~b is equivalently applied by directly setting the velocity in the region X�

to the desired values and incorporating the known jump conditions ½~b�; ½bs�, and ½bn� into numerical schemes.

4. Jump conditions

The necessary jump conditions induced by the singular force have been derived in [36]. They have been used
in the 2D immersed interface method in [37] and the 3D immersed interface method in [38]. The jump condi-
tions listed in this section are functions of both the singular force and the discontinuous body force, and they
are modified from those in [37] to take into account the discontinuous body force. The singular force appears
in the expressions of the jump conditions in the form of the tangential component fs and the normal compo-
nent fn, which are defined as
fs ¼
1

J
ðfxsx þ fysyÞ; ð43Þ

fn ¼
1

J
ðfxnx þ fynyÞ: ð44Þ
The jump condition for the velocity is
½~v� ¼ 0: ð45Þ

The jump conditions for the first derivatives of the velocity are
o~v
ox

� �
¼ �Refssy~s; ð46Þ

o~v
oy

� �
¼ Refssx~s: ð47Þ
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The jump conditions for the second derivatives of the velocity are
o2~v
ox2

� �
¼~ru1ðs2

x � s2
yÞ þ~ru2ð2sxsyÞ þ~ru3ðs2

yÞ; ð48Þ

o2~v
oy2

� �
¼~ru1ðs2

y � s2
xÞ �~ru2ð2sxsyÞ þ~ru3ðs2

xÞ; ð49Þ

o2~v
oxoy

� �
¼~ru1ð2sxsyÞ þ~ru2ðs2

y � s2
xÞ �~ru3ðsxsyÞ; ð50Þ
where~ru1;~ru2 and~ru3 are
~ru1 ¼ �
1

J 2

oJsx

oa
o~v
ox

� �
þ oJsy

oa
o~v
oy

� �� �
; ð51Þ

~ru2 ¼ �
1

J
Re

ofs~s
oa
þ onx

oa
o~v
ox

� �
þ ony

oa
o~v
oy

� �� �
; ð52Þ

~ru3 ¼ Reð½rp� � ½~b�Þ: ð53Þ

The jump conditions for the first and second derivatives of the pressure p can be expressed in terms of the jump
conditions ½p�; ½op

on� and ½Dp�. The jump conditions for the first derivatives of the pressure are
op
ox

� �
¼ sx

J
o½p�
oa
þ sy

op
on

� �
; ð54Þ

op
oy

� �
¼ sy

J
o½p�
oa
� sx

op
on

� �
: ð55Þ
The jump conditions for the second derivatives of the pressure are
o2p
ox2

� �
¼ rp1ðs2

x � s2
yÞ þ rp2ð2sxsyÞ þ rp3ðs2

yÞ; ð56Þ

o2p
oy2

� �
¼ rp1ðs2

y � s2
xÞ � rp2ð2sxsyÞ þ rp3ðs2

xÞ; ð57Þ

o2p
oxoy

� �
¼ rp1ð2sxsyÞ þ rp2ðs2

y � s2
xÞ � rp3ðsxsyÞ; ð58Þ
where rp1; rp2 and rp3 are
rp1 ¼
1

J 2

o2½p�
oa2
� oJsx

oa
op
ox

� �
� oJsy

oa
op
oy

� �� �
; ð59Þ

rp2 ¼
1

J
o

oa
op
on

� �
� onx

oa
op
ox

� �
� ony

oa
op
oy

� �� �
; ð60Þ

rp3 ¼ ½Dp�: ð61Þ

In general, if the function / satisfies a Poisson equation on the region X with the given jump conditions ½/�; ½o/

on�
and ½D/� across the immersed boundary C, the immersed interface method can be used to solve for the function
/. The required jump conditions of the first and second derivatives of the function / can be obtained by replac-
ing p with / in the above expressions. For the pressure p, the jump conditions ½p�; ½op

on� and ½Dp� are given by
½p� ¼ fn; ð62Þ
op
on

� �
¼ 1

J
ofs

oa
þ ½bn� ¼

ofs

os
þ ½bn�; ð63Þ

½Dp� ¼ 2
ou
ox

ov
oy

� �
� 2

ou
oy

ov
ox

� �
; ð64Þ



5054 S. Xu / Journal of Computational Physics 227 (2008) 5045–5071
where oð�Þ
os ¼ rð�Þ �~s denotes a tangential derivative.

Surface derivatives with respect to the Lagrangian parameter a are involved in computing the above jump
conditions. They are calculated using cubic splines or Fourier transformations.

5. Tangential singular force

As indicated by Eqs. (46) and (47), the tangential singular force fs is related to the normal derivative of the
velocity and the surface vorticity as follows:
fs ¼ �
1

Re
~s � o~v

on

� �
¼ � 1

Re
½x�; ð65Þ
where x is the vorticity in 2D. The fluid in the region X� is in the rigid motion, so
~s � o~v
on

����
C�
¼ dh

dt
; ð66Þ

xjC� ¼ 2
dh
dt
; ð67Þ
and the above relations can be written as
fs ¼ �
1

Re
~s � o~v

on

����
Cþ
� dh

dt

� �
¼ � 1

Re
xjCþ � 2

dh
dt

� �
: ð68Þ
In the current approach, fs is determined from o~v
on jCþ explicitly.

To calculate o~v
on jCþ , a one-sided finite difference scheme along the normal~n is used. The one-sided finite dif-

ference scheme with the three-point stencil shown in Fig. 4 is
o~vðS0Þ
on

¼ �3~vðS0Þ þ 4~vðS1Þ �~vðS2Þ
2dn

þOðdn2Þ; ð69Þ
where dn is the distance between two adjacent points on the stencil, and dn P
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dx2 þ dy2

p
to make sure that

two adjacent points are in different Cartesian-grid cells. This stencil can also be used for one-sided extrapo-
lation. More points can be added in the stencil for higher accuracy. The velocity at the boundary point S0

is prescribed. The velocity at the points S1 and S2 are interpolated from four surrounding Cartesian-grid
nodes. For example, the velocity at the point S2 can be interpolated from the nodes I ; II ; III , and IV in
Fig. 4. Similarly, more nodes can be used for higher accuracy. When there are multiple boundaries, they
n

Ω

Ω+

−

0S

1S

2S

yδ

xδ

nδ

nδ

Γ

IV

I II

III

Fig. 4. Stencils for one-sided finite difference, one-sided extrapolation, and bilinear interpolation.
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are separated with each other by enough Cartesian-grid nodes so that no boundaries cross the interpolation
cell. No discontinuities are therefore involved in the interpolation, and the standard bilinear interpolation
scheme can be adopted for the case in Fig. 4. Because of the staggered arrangement of the velocity compo-
nents, the interpolation cells shown in Fig. 4 are different for the different velocity components.

6. Predictor for the normal singular force

The following relation can be obtained from Eqs. (54), (55) and (62):
op
os

� �
¼ ofn

os
: ð70Þ
In general, derived from the momentum equation with the use of the identity D~v ¼ �r� ~xþrD, where
~x ¼ r�~v is the vorticity vector, the jump condition for the pressure gradient satisfies
½rp� ¼ � 1

Re
½r � ~x� þ ½~b�: ð71Þ
For the 2D case shown in Fig. 1, Eq. (71) gives
op
os

� �
¼ 1

Re
ox
on

� �
þ ½bs�: ð72Þ
Eqs. (70) and (72) indicate
1

J
ofn

oa
¼ 1

Re
ox
on

� �
þ ½bs�; ð73Þ
which can be integrated to give an expression for the normal singular force fn
fn ¼
Z

1

Re
ox
on

� �
þ ½bs�

� �
Jda; ð74Þ
where ½ox
on� ¼ ox

on jCþ as x ¼ 2 dh
dt is uniform in the region X�, and ox

on jCþ can be calculated using a one-sided finite
difference scheme similar to Eq. (69).

The pressure in the region Xþ satisfies the Poisson equation
Dp ¼ sp; ð75Þ

along with the Dirichlet and Neumann boundary conditions at Cþ
pjCþ ¼ ½p� þ pjC� ; ð76Þ
op
on

����
Cþ
¼ op

on

� �
þ op

on

����
C�
; ð77Þ
where pjC� and op
on jC� are given by Eqs. (41) and (42), respectively. The Dirichlet and Neumann boundary con-

ditions must be consistent, which indicates that ½p� must be consistent with ½op
on�. Eqs. (62) and (63) therefore

imply the necessary consistency between fn and ofs
os . The consistency can be checked by the pressure in X�,

which should satisfy Eqs. (40)–(42). Because of numerical errors, the consistency can be violated. Plotted in
Fig. 5a are the contours of the computed pressure for flow past a rotating cylinder. In the computation of
the pressure, ofs

os was calculated using Eq. (68) and fn by Eq. (74). The violation of the consistency in this exam-
ple is indicated by the non-axisymmetric pressure inside the cylinder. To enforce the consistency, Eq. (68) is
used for calculating ofs

os , but Eq. (74) is used only as a predictor for fn, and a corrector for fn as described in
Section 7 is employed. In other words, ½p� is corrected to be consistent with ½op

on�. The axisymmetric pressure
inside the cylinder in Fig. 5b is obtained with the corrector.

The reason to correct fn instead of ofs
os is as follows. It is expected that a thin shear layer may form around

the boundary C, and the vorticity in the shear layer has larger gradient in the normal direction than the tan-
gential direction. When a uniform MAC gird is used, it is likely that the vorticity field is better resolved in
the tangential direction. Eq. (74) indicates that fn is calculated from ox

on jCþ , and Eq. (68) indicates that ofs
os is
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Fig. 5. Computed pressure field of flow past a rotating cylinder with fn obtained from (a) a predictor only and (b) a predictor and a
corrector.
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calculated from ox
os jCþ . So it is expected that ofs

os is calculated more accurately than fn. In addition, ox
on jCþ is cur-

rently approximated by a one-sided finite difference scheme and ox
os jCþ by Fourier transformation, and the

approximation error associated with the former is larger than the latter.

7. Corrector for the normal singular force

Eq. (74) is used only as a predictor for fn. A correction dfn is added to the right hand side of Eq. (74) to
enforce the consistency between fn and ofs

os . Hereafter, the right hand side of Eq. (74) is denoted as fn0, and fn is
written as fn ¼ fn0 þ dfn. The correction dfn is computed such that in Xþ the pressure p satisfies the Poisson
equation, Eq. (75), and the Neumann boundary condition
op
on

����
Cþ
¼ op

on

� �
þ op

on

����
C�
; ð78Þ
where ½op
on� is given by Eq. (63) and op

on jC� is given by Eq. (42). In X�, the pressure p thus satisfies Eq. (42). The
pressure p in X� satisfies a poisson equation with sp given by Eq. (34), so Eqs. (40) and (41) are also satisfied.

7.1. Computing the correction

Using the linearity of the pressure Poisson equation, Eq. (27), The pressure p in X can be split into the Pois-
son part p0 and Laplace part q as p ¼ p0 þ q. The Poisson part p0 satisfies
Dp0 ¼ sp; ð79Þ
op0

on

� �
¼ op

on

� �
¼ ofs

os
þ ½bn�; ð80Þ

½p0� ¼ fn0; ð81Þ
op0

on

����
B

¼ gB; ð82Þ
where the Neumann data gB are assigned at the far-field boundary B for the pressure p ¼ p0 þ q. Dirichlet or
mixed boundary conditions at B can be considered similarly. The Laplace part q thus satisfies
Dq ¼ 0; ð83Þ
oq
on

� �
¼ 0; ð84Þ

½q� ¼ dfn; ð85Þ
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oq
on

����
B

¼ 0: ð86Þ
As mentioned in Section 4, the immersed interface method with cosine transformations can be used to solve
for p0. After p0 is known, p0jC� and op0

on jC� can be obtained by one-sided extrapolation and finite difference
schemes as in Fig. 4. To solve for q, the correction dfn needs to be known first.

With the right correction dfn; pjC� satisfies Eq. (41). So qjC� can be known from qjC� ¼ pjC� � p0jC� . If qjCþ
is also known, then dfn ¼ qjCþ � qjC� is known. The following system defined on Xþ can be used to determine
qjCþ
Dq ¼ 0; ð87Þ
oq
on

����
Cþ
¼ op

on

����
C�
þ op

on

� �
� op0

on

����
C�
� op0

on

� �
¼ op

on

����
C�
� op0

on

����
C�
; ð88Þ

oq
on

����
B

¼ 0; ð89Þ
where op
on jC� is given by Eq. (42). By solving the Neumann–Dirichlet map [10] based on this system, qjCþ can be

obtained.
It can be verified that the computed pressure p ¼ p0 þ q satisfies Eq. (75) in Xþ and the Neumann boundary

condition given by Eq. (78) on Cþ, and this Neumann boundary condition is equivalent to
op
on

����
Cþ
¼ � r� ~x

Re

����
Cþ
þ~a

� �
�~n; ð90Þ
where ~a is the acceleration of the boundary. As discussed in [29], rigorous pressure boundary conditions are
related to the global velocity field to achieve zero divergence, and they can be obtained via the influence matrix
method. Because the cost of the influence matrix method for an irregular domain is generally prohibitive, the
local pressure boundary condition given by Eq. (90) is commonly used in practice for moving walls in a body-
fitted grid method. The corrector in the current approach can be regarded as the superposition of a homoge-
neous solution to the pressure Poisson equation to achieve this desired normal derivative of the pressure,
Eq. (90).

The underlying boundary integral equation for the Neumann–Dirichlet map is
bqð~n0Þ ¼
Z

C
ln k~n� ~n0k2

oqð~nÞ
on

ds�
Z

C
qð~nÞ ð

~n� ~n0Þ �~n
k~n� ~n0k2

2

ds; ð91Þ
where, as shown in Fig. 6, C is the composite boundary that is composed of C and B but excludes the point
~n0; ~n0 and~n are coordinates of two different points on the composite boundary composed of C and B; b is equal
to p if C is smooth at ~n0 and is equal to the angle of a corner if ~n0 is at the corner, and the normal~n to C points
toward Xþ. In the current implementation, the above boundary integral equation is converted to a linear sys-
tem using the boundary element method. The linear system is solved using LU decomposition and backward
substitution in OðL3Þ time, where L represents the total number of boundary elements for C. If C is static,
the LU decomposition is done once at the beginning and stored for later use. It is possible to use a multipole
method to solve the Neumann–Dirichlet map in OðLÞ time.

7.2. Numerical test of a corrector-based Poisson solver

The corrector described in Section 7.1 can be used as a Cartesian-grid Poisson solver for a Poisson equation
with given boundary conditions on embedded irregular boundaries. This Poisson solver is similar to the one
proposed by Mayo [24].

As a test of the corrector-based Poisson solver, the Poisson equation D/ ¼ s/ is solved, where
s/ ¼ �2 sinðxÞ cosðyÞ is generated by taking / ¼ sinðxÞ cosðyÞ. The domain for the equation is the region
Xþ between the far-field boundary B (at x ¼ �1 and y ¼ �1) and the circle C (at ð0; 0Þ) with radius equal
to 0:5. The Neumann boundary conditions o/

on jB and o/
on jCþ are given according to / ¼ sinðxÞ cosðyÞ.



n Ω+

−Ωn

ξ

ξ0

B
x

y

Γ

Fig. 6. Boundaries and notations for a Neumann–Dirichlet map.
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Let / be a known function in the region X�. For simplicity, let / be an arbitrary constant c here. Then
½o/
on� is known, and ½/� is computed such that the given o/

on jCþ is enforced. Split / as / ¼ /0 þ w. Solve for
the Poisson part /0 with ½/0� ¼ 0 (0 is chosen arbitrarily) in the entire rectangular region X enclosed by B

from
D/0 ¼ s/0
; ð92Þ

o/0

on

� �
¼ o/

on

����
Cþ
; ð93Þ

½/0� ¼ 0; ð94Þ
o/0

on

����
B

¼ o/
on

����
B

; ð95Þ
where s/0
¼ s/ in Xþ and s/0

¼ 0 in X�. After /0 is known, /0jC� and o/0

on jC� are calculated. The Laplace part w
in X satisfies
Dw ¼ 0; ð96Þ
ow
on

� �
¼ 0; ð97Þ

½w� ¼ ½/�; ð98Þ
ow
on

����
B

¼ 0; ð99Þ
where ½/� ¼ /0jCþ þ wjCþ � c ¼ /0jC� þ wjCþ � c, and wCþ is determined from a Neumann–Dirichlet map cor-
responding to the following system defined on Xþ:
Dw ¼ 0; ð100Þ
ow
on

����
Cþ
¼ o/

on

����
Cþ
� o/0

on

����
Cþ
¼ o/0

on

� �
C

� o/0

on

����
Cþ
¼ �o/0

on

����
C�
; ð101Þ

ow
on

����
B

¼ 0: ð102Þ
The computation is done with N x � Ny �Ma ¼ n� n� n, where Nx and N y are the numbers of MAC grid cells
along the x and y axes, respectively, and Ma is the number of Lagrangian points for C. The Neumann–Dirich-
let map is solved using LB ¼ 4n boundary elements on B and LC ¼ n

2
on C. Table 1 summarizes the results of the



Table 1
Convergence analysis for the corrector-based Poisson solver

n 30 60 120 240 480

ke/k1 2.84 � 10�3 9.19 � 10�4 2.57 � 10�4 5.92 � 10�5 1.41 � 10�5

Order – 1.63 1.84 2.12 2.07
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convergence analysis, indicating second-order convergence rate in the infinity norm. Because the computed
solution / is subject to a constant, the infinity norm ke/k1 in Table 1 is calculated by
ke/k1 ¼
maxðe/Þ �minðe/Þ

2
: ð103Þ
The order in Table 1 is calculated by
order ¼ lnðkepreviousk1=kecurrentk1Þ
lnðncurrent=npreviousÞ

; ð104Þ
where ecurrent and eprevious denote the errors at the current and the previous columns in Table 1, respectively.

8. Numerical results

Numerical examples are provided in this section to test the accuracy, efficiency, and stability of the pro-
posed immersed interface method. The effect of the corrector is also investigated in these examples.

8.1. Circular Couette flow

In the first example, steady circular Couette flow is simulated. The domain of the simulation and the geom-
etry of the two rotating concentric cylinders are shown in Fig. 7. The domain is the rectangle of the size lx � ly .
The angular velocity of the inner and outer cylinders is denoted as P1 and P2, respectively. In the simulation,
r1 ¼ 0:5; r2 ¼ 2:0; lx ¼ ly ¼ 2;P1 ¼ 1 and P2 ¼ �1. The temporal resolution of the simulation is controlled by
the convective and viscous CFL numbers
CFLc ¼ dt
umax

dx
þ vmax

dy

� �
; ð105Þ

CFLl ¼
dt
Re

1

dx2
þ 1

dy2

� �
: ð106Þ
2r

yl 1r

xl

Π2

Π1

ΓB

y

x

Fig. 7. Geometry and domain for the simulation of circular Couette flow.
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The analytical solution of the steady flow between the two cylinders is given by
Table
Spatia

n

30
60
120
240
u ¼ � A1 þ
A2

r2

� �
y; ð107Þ

v ¼ A1 þ
A2

r2

� �
x; ð108Þ

p ¼ A2
1r2

2
� A2

2

2r2
þ A1A2 � lnðr2Þ þ p0; ð109Þ
where r2 ¼ x2 þ y2; p0 is an arbitrary constant, and A1 and A2 are
A1 ¼
P2r2

2 �P1r2
1

r2
2 � r2

1

; ð110Þ

A2 ¼
ðP1 �P2Þr2

1r2
2

r2
2 � r2

1

: ð111Þ
Dirichlet boundary conditions for the velocity and Neumann boundary conditions for the pressure are applied
at the far-field boundary B in Fig. 7, and they are obtained from the analytical solution. In the current numer-
ical setup, only the inner cylinder C is contained in the simulation domain, and its motion is enforced by the
current explicit approach.

With Nx � N y �Ma ¼ n� n� n; LB ¼ 4n
3
, and LC ¼ n

2
, spatial convergence analysis is conducted at Re ¼ 10

by altering n, where N x;Ny ;Ma; LB, and LC are defined in Section 7.2. The results are provided in Table 2, indi-
cating near second-order accuracy in the infinity norm for the velocity and the pressure.

To test the stability of the method, the flow at a relatively high Reynolds number Re ¼ 2000 is simulated
with Nx � N y �Ma � LB � LC ¼ 64� 64� 64� 128� 32, and CFLc ¼ CFLl ¼ 0:8. The simulation starts
from a zero velocity field. After a relatively longer transient process, a steady flow state is reached, as shown
in Fig. 8. The method is thus stable at this relatively high Reynolds number with the relatively large CFL
numbers.
2
l convergence analysis for steady circular Couette flow

keuk1 Order kevk1 Order kepk1 Order

1.56 � 10�2 – 1.33 � 10�2 – 2.00 � 10�2 –
3.18 � 10�3 2.29 3.19 � 10�3 2.06 5.92 � 10�3 1.76
1.05 � 10�3 1.60 1.08 � 10�3 1.56 1.78 � 10�3 1.73
2.67 � 10�4 1.98 2.65 � 10�4 2.03 1.15 � 10�3 0.63
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Fig. 8. Computed circular Couette flow at Re = 2000: (a) u and (b) p.



Table 3
Spatial convergence analysis for steady circular Couette flow computed without the corrector

n keuk1 Order kevk1 Order kepk1 Order

30 1.54 � 10�2 – 1.33 � 10�2 – 3.52 � 10�2 –
60 3.63 � 10�3 2.08 3.62 � 10�3 1.88 2.57 � 10�2 0.45
120 1.10 � 10�3 1.72 1.10 � 10�3 1.72 2.48 � 10�2 0.05
240 2.82 � 10�4 1.96 3.05 � 10�4 1.85 6.94 � 10�2 �1.48

S. Xu / Journal of Computational Physics 227 (2008) 5045–5071 5061
The effect of the corrector on the simulation accuracy is investigated by turning it off. Similar to Table 2, the
results of the convergence analysis without the corrector are shown in Table 3. The numerical errors for the
velocity in Table 3 are about the same as those in Table 2, and the accuracy for the velocity is still second-
order. However, the numerical errors for the pressure are not reduced by increasing the grid resolution.

8.2. Flow past a stationary cylinder

In the second example, flow past a stationary cylinder is simulated at Re ¼ 20; 40; 50; 100, and 200. Shown
in Fig. 9 are the geometry and domain of the base simulation. The base simulation is referred as Case ðn; lÞ and
is used for plotting figures. The spatial resolution of the base computation for Re ¼ 20; 40 and 50 is given by
Nx � N y �Ma � LB � LC ¼ 960� 480� 256� 256� 128, and for Re ¼ 100 and 200 by 1600 � 800 � 256 �
256 � 128. The effect of the spatial resolution and the domain size is investigated by reducing the discretization
density to Nx

2
� Ny

2
� Ma

2
� LB

2
� LC

2
in Case ðn

2
; lÞ and by extending the domain size to 3lx

2
� 3ly

2
in Case ðn; 3l

2
Þ. The

effect of the corrector is also investigated by turning it off in Case dfn ¼ 0. The time step of all the computation
is controlled by CFLc ¼ CFLl ¼ 0:5.

A free stream with u ¼ 1 enters the domain in the direction of the x axis. The Neumann boundary condition
op
ox ¼ 1

Re
o2u
ox2 is applied for the pressure at the inlet. At the two sides of the domain, symmetric boundary condi-

tions are used. At the domain outlet, the boundary conditions o~v
ox ¼ 0 and op

ox ¼ 1
Re

o2u
ox2 are used. The initial veloc-

ity field~v0 is given by
~v0 ¼ ~U �rv; ð112Þ

where �rv is a divergence-free correction to the uniform velocity field ~U ¼ ð1; 0Þ to enforce the no-penetra-
tion condition on the cylinder, and v satisfies
Dv ¼ 0; ð113Þ
ly

l x

0.5

y

x

(24,+8)

(24,−8)

(−8,8)

(−8,−8)

Γ

B

u=1
α

Fig. 9. Geometry and domain for the simulation of flow past a cylinder.
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ov
on

����
Cþ
¼ ~U �~n; ð114Þ

ov
on

����
B

¼ 0: ð115Þ
The corrector-based Poisson solver described in Section 7.2 is used to solve for v.
In general, the fluid force ~F ¼ ðF x; F yÞ applied by the fluid on Cþ can be calculated from
~F ¼ �
Z

C

~f daþ S
d2~xc

dt2
þ S

dh
dt

� �2

ð~xc �~xcmÞ; ð116Þ
where S is the area enclosed by C, and~xcm is the coordinates of the geometric center (the center of mass) of X�.
The drag and lift coefficients are defined as Cx ¼ 2F x and Cy ¼ 2F y , respectively. The surface vorticity xs and
the surface pressure ps on Cþ are calculated from
xs ¼ �Refs þ xjC� ; ð117Þ
ps ¼ fn þ pjC� ; ð118Þ
where xjC� ¼ 2 dh
dt, and p� is given by Eq. (41). In the current example, the cylinder is stationary and~xc ¼~xcm,

so Cx ¼ �2
R

C fxda, Cy ¼ �2
R

C fy da;xs ¼ �Refs and ps ¼ fn (subject to a constant).

8.2.1. Re ¼ 20; 40, and 50

At Re ¼ 20 and 40, the flow reaches a steady state. Two recirculating bubbles are formed behind the cyl-
inder, as shown in Fig. 10. The characteristics of the recirculating bubbles, the separation angle H, and the
drag coefficient Cx are compared with experimental and other numerical results in Table 4, where the length
x
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Fig. 10. Streamfunction contours for flow past a cylinder: (a) Re = 20 and (b) Re = 40.

4
ary of flow characteristics for flow past a cylinder at Re = 20 and Re = 40

Re = 20 Re = 40

L a b H Cx L a b H Cx

3] – – – – 2.22 – – – – 1.48
] 0.93 0.33 0.46 45.0� – 2.13 0.76 0.59 53.8� –
] 0.94 – – 43.7� 2.05 2.35 – – 53.8� 1.52
] 0.91 – – 45.7� 2.00 2.24 – – 55.6� 1.50
7] 0.92 – – 44.2� 2.23 2.21 – – 53.5� 1.66
2] 0.93 0.36 0.43 43.9� 2.16 2.23 0.71 0.59 53.4� 1.61
n, l) 0.93 0.36 0.43 44.0� 2.23 2.24 0.72 0.60 53.8� 1.66
n
2 ; lÞ 0.90 0.38 0.42 43.2� 2.24 2.21 0.73 0.56 52.9� 1.70
n; 3l

2 Þ 0.91 0.36 0.42 43.6� 2.14 2.24 0.71 0.60 53.4� 1.60
fn = 0 0.93 0.36 0.43 44.0� 2.14 2.24 0.72 0.60 53.8� 1.60
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L and the location ð0:5þ a;� b
2
Þ of the recirculating bubbles are defined in Fig. 10. The current results lie well

within the range of values given by the other data.
Between Re ¼ 40 and 50, the flow becomes unstable. Round-off and other sources of numerical errors can

destabilize the flow in the simulation. The time evolution of the drag and lift coefficients of the flow at Re ¼ 50
is shown in Fig. 11, indicating that an unsteady state is reached after a considerably long time.

In Fig. 12, the surface vorticity and pressure on the cylinder are compared with the previous computational
results by Braza et al. [2] for Re ¼ 20 and 40. Very good agreement is obtained for the surface vorticity. The
surface pressure behind the cylinder is slightly lower in the current simulation, which explains why the current
drag coefficient is slightly higher.

The results from Case dfn ¼ 0, where the corrector is turned off, are also shown in Table 4. They agree with
the others. Comparison of steady flow details near the cylinder computed with and without the corrector is
shown in Fig. 13, indicating a close match.

8.2.2. Re ¼ 100 and 200

At Re ¼ 100 and 200, the flow is unsteady, and alternatively shedded vortices form the well-known Karman
vortex street behind the cylinder. The time evolution of the drag and lift coefficients is shown in Fig. 14. Table
5 compares with previous numerical results the drag coefficient Cx, the lift coefficient Cy , and the Strouhal
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Fig. 11. (a) Drag and (b) lift coefficients versus time for flow past a cylinder at Re = 50.
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Fig. 12. (a) Surface vorticity and (b) pressure on a cylinder in flow at Re = 20 and Re = 40.





Table 5
Summary of flow characteristics for flow past a cylinder at Re = 100 and Re = 200

Re = 100 Re = 200

Cx Cy St Cx Cy St

Ref. [2] 1.36 ± 0.015 ±0.250 – 1.40 ± 0.050 ±0.75 –
Ref. [31] 1.43 ± 0.009 ±0.322 0.172 1.45 ± 0.036 ±0.63 0.201
Ref. [37] 1.42 ± 0.013 ±0.340 0.171 1.42 ± 0.040 ±0.66 0.202
Ref. [22] 1.38 ± 0.010 ±0.337 0.169 1.37 ± 0.046 ±0.70 0.199
Ref. [15] 1.37 ± 0.009 ±0.323 0.160 1.34 ± 0.030 ±0.43 0.200
Case (n, l) 1.42 ± 0.010 ±0.353 0.172 1.43 ± 0.050 ±0.71 0.202
Case ðn2 ; lÞ 1.47 ± 0.010 ±0.344 0.172 1.57 ± 0.044 ±0.66 0.201
Case ðn; 3l

2 Þ 1.40 ± 0.011 ±0.328 0.167 1.45 ± 0.044 ±0.67 0.199
Case dfn = 0 1.38 ± 0.012 ±0.341 0.172 1.46 ± 0.054 ±0.71 0.202
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Fig. 15. Geometry and domain for the simulation of flow around a flapper.
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investigated by reducing the discretization density to N x � N y �Ma � LB � LC ¼ 256� 256� 128� 128� 64
in Case ðn

2
; dfn 6¼ 0Þ. The effect of the corrector is also investigated by turning it off in Case ðn; dfn ¼ 0Þ and

Case ðn
2
; dfn ¼ 0Þ correspondingly. Except where otherwise stated, a fixed time step dt ¼ 3:927� 10�3 � T f

2000

is used in the computation, where T f ¼ 2p
0:8

is the flapping period of the flapper.
An alternative method described in [37] is also used to simulate the same flow with the same numerical

setup. The simulation cases are called Case ðn; sÞ and Case ðn
2
; sÞ, corresponding to the above two spatial res-

olutions. The simulation results are compared below with those from the current immersed interface method.
The alternative method is the immersed interface method with a spring model for the singular force. In Case
ðn; sÞ and Case ðn

2
; sÞ, the spring model is
~f ¼ Ksð~X e � ~X Þ; ð122Þ

where the spring stiffness Ks ¼ 160. Extensive testing has been done in [37,1] on this alternative method. It is
found that an N x � N y �Ma ¼ 256� 256� 128 grid sufficiently resolves the current flow.

8.3.1. Re ¼ 157

Flow around a hovering elliptic flapper of the same aspect ratio with the same kinematics and the same
Reynolds number has been simulated in [37,35], where simulation results are compared between the alternative
method and a coordinate transformation method. Here, comparison of results is made between the current
base simulation (Case ðn; dfn 6¼ 0Þ), the simulation by the alternative method (Case ðn; sÞ), and the simulation
without the corrector (Case ðn; dfn ¼ 0Þ).
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flappers, n, increases. As pointed out in Section 7.1, if all objects in flow are stationary, the cost to solve the
Neumann–Dirichlet map in every time step can be cut to OðLÞ just for backward substitution. It is also pos-
sible to use a multipole method to solve the Neumann–Dirichlet map in OðLÞ time for moving boundaries. In
either case, the method can handle multiple objects efficiently.

9. Conclusions

In this paper, an explicit approach is proposed to enforce the prescribed motion of a rigid object in the
immersed interface method. The motion of the object boundary is generated by a singular force in the
Navier–Stokes equations. The tangential component of the singular force is related to the surface vorticity
and is calculated from the normal derivative of the velocity. The normal component of the singular force is
determined from a predictor and a corrector. The predictor uses the normal derivative of the vorticity. The
corrector superposes a homogeneous solution to the pressure Poisson equation to achieve the desired normal
derivative of the pressure. In general, the corrector can be used as a Poisson solver for Poisson equations with
Neumann, Dirichlet or mixed data on embedded irregular boundaries.

It is simple to implement the current explicit approach in existing codes of the immersed interface method.
Grid convergence study shows that the current immersed interface method with this approach has achieved
near second-order accuracy in the infinity norm for the velocity and the pressure. The method is stable to sim-
ulate relatively high Reynolds number flow with large CFL numbers by eliminating the need of any ad hoc
constitutive laws or feedback control and associated stiffness. Without iterative solvers, it is efficient for mov-
ing rigid boundaries, especially if the corrector is turned off when the spatial resolution is sufficient. There are
no fundamental obstacles to extend the current method to 3D. A 3D version of the method is under develop-
ment and will be reported in the future.
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